Singular vectors on manifolds over totally real number fields

نویسندگان

چکیده

We extend the notion of singular vectors to context Diophantine approximation real numbers with elements a totally number field K. For $$m\ge 1$$ , we establish version Dani’s correspondence in fields and prove that under class ‘friendly measures’ $$K_S^m$$ set has measure zero. Here S is Archimedean valuations K $$K_S$$ product completions $$\sigma (K)$$ \in S$$ . On other hand, show existence uncountably many non-trivial on suitable submanifolds $$K^m_S$$ action certain one parameter subgroup $${\mathrm {SL}}_{m+1}(K_S)$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Forms over Totally Real Number Fields

A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...

متن کامل

Representations over Totally Real Fields

In this paper, we study the level lowering problem for mod 2 representations of the absolute Galois group of a totally real field F. In the case F = Q, this was done by Buzzard; here, we generalise some of Buzzard’s results to higher weight and arbitrary totally real fields, using Rajaei’s generalisation of Ribet’s theorem and previous work of Fujiwara and the author. 2000 Mathematics Subject C...

متن کامل

Companion Forms Over Totally Real Fields, II

We prove a companion forms theorem for mod l Hilbert modular forms. This work generalises results of Gross and Coleman–Voloch for modular forms over Q, and gives a new proof of their results in many cases.

متن کامل

Companion Forms over Totally Real Fields

We show that if F is a totally real field in which p splits completely and f is a mod p Hilbert modular form with parallel weight 2 < k < p, which is ordinary at all primes dividing p and has tamely ramified Galois representation at all primes dividing p, then there is a “companion form” of parallel weight k′ := p + 1 − k. This work generalises results of Gross and Coleman–Voloch for modular fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2022

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-022-01749-3